Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics
Core Mathematics C4 (6666)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 6666_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- T The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- aef "any equivalent form"

4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

	Question 1 Notes Continued					
$\begin{aligned} & \text { 1. (a) } \\ & \text { ctd. } \end{aligned}$	SC	If a candidate would otherwise score $2^{\text {nd }} \mathrm{A} 0,3^{\text {rd }} \mathrm{A} 0$ (i.e. scores A0A0 in the final two marks to (a)) then allow Special Case $\mathbf{2}^{\text {nd }} \mathbf{A 1}$ for either SC: $2\left[1-\frac{9}{8} x ; \ldots\right]$ or SC: $2\left[1+\ldots-\frac{81}{128} x^{2}+\ldots\right]$ or $\mathbf{S C}: \lambda\left[1-\frac{9}{8} x-\frac{81}{128} x^{2}+\ldots\right]$ or $\mathbf{S C}:\left[\lambda-\frac{9 \lambda}{8} x-\frac{81 \lambda}{128} x^{2}+\ldots\right]$ (where λ can be 1 or omitted), where each term in the $[\ldots .$. is a simplified fraction or a decimal, OR SC: for $2 \frac{18}{8} x \quad \frac{162}{128} x^{2}+\ldots$ (i.e. for not simplifying their correct coefficients)				
	Note	Candidates who write $2\left[1+\left(\frac{1}{2}\right)\left(\frac{9 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]$, where $k=\frac{9}{4}$ and not $\frac{9}{4}$ and achieve $2+\frac{9}{4} x ; \quad \frac{81}{64} x^{2}+\ldots$ will get B1M1A1A0A1				
	Note	Ignore extra terms beyond the term in x^{2}				
	Note	You can ignore subsequent working following a correct answer				
	Note	Allow B1M1A1 for $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right.$				
	Note	Allow B1M1A1A1A1 for $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9 x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{9 x}{4}\right)^{2}+\ldots\right]=2-\frac{9}{4} x-\frac{81}{64} x^{2}+\ldots$				
(b)	Note	Give B1 M1 for $\sqrt{310} \approx 10\left(2-\frac{9}{4}(0.1)-\frac{81}{64}(0.1)^{2}\right)$				
	Note	Other alternative suitable values for \boldsymbol{x} for $\sqrt{310} \approx \beta \sqrt{4-9 \text { (their } x)}$				
		\boldsymbol{x}	Estimate		x	Estimate
		7 $\frac{38}{147}$	17.479	14	$\frac{79}{294}$	18.256
		$8 \quad \frac{3}{32}$	17.599	15	$\frac{118}{405}$	18.555
		9 $\frac{14}{729}$	17.607	16	$\frac{119}{384}$	18.899
		10 $\frac{1}{10}$	17.623	17	$\frac{94}{289}$	19.283
		11 $\frac{58}{363}$	17.690	18	$\frac{493}{1458}$	19.701
		$12 \quad \frac{133}{648}$	17.819	19	$\frac{126}{361}$	20.150
		$13 \quad \frac{122}{507}$	18.009	20	$\frac{43}{120}$	20.625
	Note	E.g. Give B1 M1 A1 for $\sqrt{310} \approx 12\left(2-\frac{9}{4}\left(\frac{133}{648}\right)-\frac{81}{64}\left(\frac{133}{648}\right)^{2}\right)=17.819(3 \mathrm{dp})$				
	Note	Allow B1 M1 A1 for $\sqrt{310} \approx 100\left(2-\frac{9}{4}(0.441)-\frac{81}{64}(0.441)^{2}\right)=76.161(3 \mathrm{dp})$				
	Note	Give B1 M1 A0 for $\sqrt{310} \approx 10\left(2-\frac{9}{4}(0.1)-\frac{81}{64}(0.1)^{2}-\frac{729}{512}(0.1)^{3}\right)=17.609(3 \mathrm{dp})$				

Question 1 Notes Continued

Question Number	Scheme	Notes	Marks
2.	$x^{2}+x y+y^{2} \quad 4 x \quad 5 y+1=0$		
(a)	$\{x\} \underline{2 x}+\left(\underline{y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}}\right)+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-4-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\underline{0}$		$\begin{array}{r} \text { M1 } 1 \underline{\mathrm{~A} 1} \\ \underline{\underline{\mathrm{~B} 1}} \end{array}$
	$2 x+y \quad 4+\left(\begin{array}{ll}x+2 y & 5\end{array}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$		dM1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y \quad 4}{5 \times 2 y}$ or $\frac{4}{} \frac{2 x}{}+2 y \quad 5$	o.e.	A1 cso
			[5]
(b)	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} 2 x+y-4=0$		M1
	$\{y=4-2 x \Rightarrow\} x^{2}+x(4-2 x)+(4-2 x)^{2}-4 x-5(4-2 x)+1=0$		dM1
	$x^{2}+4 x \quad 2 x^{2}+16 \quad 16 x+4 x^{2} \quad 4 x \quad 20+10 x+1=0$		
	gives $3 x^{2} \quad 6 x \quad 3=0$ or $3 x^{2} \quad 6 x=3$ or $x^{2} \quad 2 x \quad 1=0$	Correct 3TQ in terms of x	A1
	$\left(\begin{array}{llll}x & 1\end{array}\right)^{2} \quad 1 \quad 1=0$ and $x=\ldots$	Method mark for solving a 3TQ in x	ddM1
	$x=1+\sqrt{2}, 1-\sqrt{2}$	$x=1+\sqrt{2}, 1-\sqrt{2}$ only	A1
			[5]
(b)$\text { Alt } 1$	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} 2 x+y-4=0$		M1
	$\left\{x=\frac{4-y}{2} \Rightarrow\right\}\left(\frac{4-y}{2}\right)^{2}+\left(\frac{4-y}{2}\right) y+y^{2}-4\left(\frac{4-y}{2}\right)-5 y+1=0$		dM1
	$\left(\frac{16-8 y+y^{2}}{2}\right)+\left(\frac{4 y-y^{2}}{2}\right)+y^{2}-2(4-y)-5 y+1=0$		
	gives $3 y^{2} \quad 12 y \quad 12=0$ or $3 y^{2} \quad 12 y=12$ or y^{2} 4y $4=0$	Correct 3TQ in terms of y	A1
	$\begin{gathered} \begin{array}{c} \left(\begin{array}{ll} y & 2 \end{array}\right)^{2} 4 \end{array} \quad 4=0 \text { and } y=\ldots \\ x=\frac{4-(2+2 \sqrt{2})}{2}, x=\frac{4-(2-2 \sqrt{2})}{2} \end{gathered}$ and fi	Solves a 3 TQ in y ds at least one value for x	ddM1
	$x=1+\sqrt{2}, 1-\sqrt{2}$	$x=1+\sqrt{2}, 1-\sqrt{2}$ only	A1
			[5]
			10
(a) Alt 1	$\left\{\frac{2}{x \chi} \nsim\right\} \underline{2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}}+\left(\underline{\left.\underline{y \frac{\mathrm{~d} x}{\mathrm{~d} y}+x}\right)+2 y-4 \frac{\mathrm{~d} x}{\mathrm{~d} y}-5=\underline{0}}\right.$		$\begin{array}{r} \text { M1 } \underline{\mathrm{A} 1} \\ \underline{\underline{\mathrm{~B} 1}} \end{array}$
	$x+2 y-5+(2 x+y-4) \frac{\mathrm{d} x}{\mathrm{~d} y}=0$		dM1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y \quad 4}{5 \times 2 y}$ or $\frac{4}{} \frac{2 x}{}+2 y \frac{y}{5}$	o.e.	A1 cso
			[5]

	Question 2 Notes	
2. (a)	M1	Differentiates implicitly to include either $x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $y^{2} \rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $5 y \rightarrow 5 \frac{\mathrm{~d} y}{\mathrm{~d} x}$. $\left(\right.$ Ignore $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots\right)$
	A1	$x^{2} \rightarrow 2 x \text { and } y^{2} \quad 4 x \quad 5 y+1=0 \rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad 4 \quad 5 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
	B1	$x y \rightarrow y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}$
	Note	If an extra term appears then award $1^{\text {st }} \mathrm{A} 0$
	Note	$2 x+y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad 4 \quad 5 \frac{\mathrm{~d} y}{\mathrm{~d} x} \rightarrow 2 x+y \quad 4=x \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}$ will get $1^{\text {st }} \mathrm{A} 1$ (implied) as the " $=0$ " can be implied the rearrangement of their equation.
	dM1	dependent on the previous M mark An attempt to factorise out all the terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as long as there are at least two terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
	A1 cso	$\frac{2 x+y}{5 x} \quad 4 \text { or } \frac{4}{4} \begin{array}{rl} 2 x & y \\ \hline+2 y & 5 \end{array}$ If the candidate's solution is not completely correct, then do not give the final A mark
(b)	M1	Sets the numerator of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero (or the denominator of their $\frac{\mathrm{d} x}{\mathrm{~d} y}$ equal to zero) o.e.
	Note Note	This mark can also be gained by setting $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero in their differentiated equation from (a) If the numerator involves one variable only then only the $1^{\text {st }}$ M1 mark is possible in part (b).
	dM1	dependent on the previous M mark Substitutes their x or their y (from their numerator $=0$) into the printed equation to give an equation in one variable only
	A1 Note	For obtaining the correct 3 TQ. E.g.: either $3 x^{2}-6 x-3\{=0\}$ or $-3 x^{2}+6 x+3\{=0\}$ This mark can also be awarded for a correct 3 term equation. E.g. either $3 x^{2} \quad 6 x=3$ $x^{2} \quad 2 x \quad 1=0$ or $x^{2}=2 x+1$ are all fine for A1
	ddM1	dependent on the previous 2 M marks See page 6: Method mark for solving THEIR 3-term quadratic in one variable Quadratic Equation to solve: $3 x^{2} \quad 6 x \quad 3=0$ Way 1: $x=\frac{6 \pm \sqrt{(6)^{2} 4(3)(3)}}{2(3)}$ Way 2: $\quad x^{2}-2 x-1=0 \Rightarrow(x-1)^{2}-1-1=0 \Rightarrow x=\ldots$ Way 3: Or writes down at least one exact correct x-root (or one correct x-root to $2 d p$) from their quadratic equation. This is usually found on their calculator. Way 4: (Only allowed if their 3TQ can be factorised) - $\quad\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $\|p q\|=\|c\|$, leading to $x=\ldots$ - $\quad\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $\|p q\|=\|c\|$ and $\|m n\|=a$, leading to $x=\ldots$
	Note	If a candidate applies the alternative method then they also need to use their $x=\frac{4 \quad y}{2}$ to find at least one value for x in order to gain the final M mark.
	A1	Exact values of $x=1+\sqrt{2}, 1-\sqrt{2}$ (or $1 \pm \sqrt{2}$), cao Apply isw if y-values are also found.
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator for $\frac{\mathrm{d} y}{\mathrm{~d} x}$) to gain all 5 marks in part (b)

	Question 2 Notes	
$\begin{aligned} & \text { 2. (a) } \\ & \text { Alt } 1 \end{aligned}$	M1	Differentiates implicitly to include either $y \frac{\mathrm{~d} x}{\mathrm{~d} y}$ or $x^{2} \rightarrow 2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}$ or $-4 x \rightarrow-4 \frac{\mathrm{~d} x}{\mathrm{~d} y}$. . Ignore $\left.\frac{\mathrm{d} x}{\mathrm{~d} y}=\ldots\right)$
	A1	$x^{2} \rightarrow 2 x \frac{\mathrm{~d} x}{\mathrm{~d} y} \text { and } y^{2}-4 x-5 y+1=0 \rightarrow 2 y-4 \frac{\mathrm{~d} x}{\mathrm{~d} y}-5=0$
	B1	$x y \rightarrow y \frac{\mathrm{~d} x}{\mathrm{~d} y}+x$
	Note	If an extra term appears then award ${ }^{\text {st }} \mathrm{A} 0$
	Note	$\begin{aligned} & 2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}+y \frac{\mathrm{~d} x}{\mathrm{~d} y}+x+2 y-4 \frac{\mathrm{~d} x}{\mathrm{~d} y}-5 \rightarrow x+2 y-5=-2 x \frac{\mathrm{~d} x}{\mathrm{~d} y}-y \frac{\mathrm{~d} x}{\mathrm{~d} y}+4 \frac{\mathrm{~d} x}{\mathrm{~d} y} \\ & \text { will get } 1^{\text {st }} \mathrm{A} 1 \text { (implied) as the " }=0 \text { " can be implied the rearrangement of their equation. } \end{aligned}$
	dM1	dependent on the previous M mark An attempt to factorise out all the terms in $\frac{\mathrm{d} x}{\mathrm{~d} y}$ as long as there are at least two terms in $\frac{\mathrm{d} x}{\mathrm{~d} y}$
	A1 cso	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y-4}{5-x-2 y} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4-2 x-y}{x+2 y-5}$ If the candidate's solution is not completely correct, then do not give the final A mark
(a)	Note	Writing down from no working - $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y-4}{5-x-2 y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4-2 x-y}{x+2 y-5}$ scores M1 A1 B1 M1 A1 - $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4-2 x-y}{5-x-2 y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+y-4}{x+2 y-5}$ scores M1 A0 B1 M1 A0
	Note	Writing $2 x \mathrm{~d} x+y \mathrm{~d} x+x \mathrm{~d} y+2 y \mathrm{~d} y-4 \mathrm{~d} x-5 \mathrm{~d} y=0$ scores M1 A1 B1

Question Number	Scheme		Notes	Marks
3. (i)	$\frac{13-4 x}{(2 x+1)^{2}(x+3)} \equiv \frac{A}{(2 x+1)}+\frac{B}{(2 x+1)^{2}}+\frac{C}{(x+3)}$			
(a)	$B=6, C=1$		At least one of $B=6$ or $C=1$	B1
			Both $B=6$ and $C=1$	B1
	$\begin{aligned} & 13-4 x \equiv A(2 x+1)(x+3)+B(x+3)+C(2 x+1)^{2} \\ & x=-3 \Rightarrow 25=25 C \Rightarrow C=1 \\ & x=-\frac{1}{2} \Rightarrow 13--2=\frac{5}{2} B \Rightarrow 15=2.5 B \Rightarrow B=6 \end{aligned}$		Writes down a correct identity and attempts to find the value of either one of A or B or C	M1
	$\begin{gathered} \hline \text { Either } \quad x^{2}: 0=2 A+4 C, \quad \text { constant: }: 13=3 A+3 B+C, \\ x: \quad 4=7 A+B+4 C \text { or } \quad x=0 \Rightarrow 13=3 A+3 B+C \\ \text { leading to } A=2 \\ \hline \end{gathered}$		Using a correct identity to find $A=2$	A1
				[4]
(b)	$\int \frac{13-4 x}{(2 x+1)^{2}(x+3)} \mathrm{d} x=\int \frac{-2}{(2 x+1)}+\frac{6}{(2 x+1)^{2}}+\frac{1}{(x+3)} \mathrm{d} x$			
	$=\frac{(-2)}{2} \ln (2 x+1)+\frac{6(2 x+1)^{-1}}{(-1)(2)}+\ln (x+3)\{+c\}$ o.e. $\left\{=-\ln (2 x+1)-3(2 x+1)^{-1}+\ln (x+3)\{+c\}\right\}$		See notes	M1
			ast two terms correctly integrated	A1ft
			ect answer, o.e. Simplified or unied. The correct answer must be stated on one line Ignore the absence of ' $+c$ '	A1
				[3]
(ii)	$\left\{\left(\mathrm{e}^{x}+1\right)^{3}=\right\} \mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1$	$\mathrm{e}^{3 x}+3 \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+1$, simplified or un-simplified		B1
	$\left\{\int\left(\mathrm{e}^{x}+1\right)^{3} \mathrm{~d} x\right\}=\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x\{+c\}$		At least 3 examples (see notes) of correct ft integration	M1
		simplif	$\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x$ or un-simplified with or without	A1
				[3]
(iii)	$\int \frac{1}{4 x+5 x^{\frac{1}{3}}} \mathrm{~d} x, x>0 ; u^{3}=x$	$\begin{array}{r} 3 u^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \text { or } \frac{\mathrm{d} x}{\mathrm{~d} u}=3 u^{2} \text { or } \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{3} x^{\frac{2}{3}} \\ \\ \text { or } 3 u^{2} \mathrm{~d} u=\mathrm{d} x \text { o.e. } \end{array}$		
	$3 u^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=1$			B1
	$=\int \frac{1}{4 u^{3}+5 u} \cdot 3 u^{2} \mathrm{~d} u\left\{=\int \frac{3 u}{4 u^{2}+5} \mathrm{~d} u\right\}$	Expression of the form $\int \frac{ \pm k u^{2}}{4 u^{3} \pm 5 u}\{\mathrm{~d} u\}$, $k \neq 0$ Does not have to include integral sign or $\mathrm{d} u$ Can be implied by later working		M1
	$=\frac{3}{8} \ln \left(4 u^{2}+5\right)\{+c\}$	dependent on the previous M mark $\pm \lambda \ln \left(4 u^{2}+5\right) ; \lambda$ is a constant $; \lambda \neq 0$		dM1
	$=\frac{3}{8} \ln \left(4 x^{\frac{2}{3}}+5\right)\{+c\}$	Correct answer in x with or without $+c$		A1
				[4]
				14

Note \quad Condone $2^{\text {nd }}$ M1 for poor bracketing, but do not allow poor bracketing for the final A1 E.g. Give final A0 for $\frac{3}{8} \ln 4 x^{\frac{2}{3}}+5\{+c\}$ unless recovered

Question Number	Scheme	Notes	Marks
3. (ii)$\text { Alt } 1$	$\int\left(\mathrm{e}^{x}+1\right)^{3} \mathrm{~d} x ; u=\mathrm{e}^{x}+1 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$		
	$\left\{=\int \frac{u^{3}}{(u-1)} \mathrm{d} u=\right\} \int\left(u^{2}+u+1+\frac{1}{u-1}\right) \mathrm{d} u$	$\int\left(u^{2}+u+1+\frac{1}{u-1}\right)\{\mathrm{d} u\}$ where $u=\mathrm{e}^{x}+1$	B1
	$=\frac{1}{3} u^{3}+\frac{1}{2} u^{2}+u+\ln (u-1)\{+c\}$	At least 3 of either $\alpha u^{2} \rightarrow \frac{\alpha}{3} u^{3}$ or $\beta u \rightarrow \frac{\beta}{2} u^{2}$ or $\delta \rightarrow \delta u$ or $\frac{\lambda}{u-1} \rightarrow \lambda \ln (u-1) ; \alpha, \beta, \delta, \lambda \neq 0$	M1
	$=\frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\left(\mathrm{e}^{x}+1\right)+\ln \left(\mathrm{e}^{x}+1-1\right)\{+c\}$		
	$=\frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\left(\mathrm{e}^{x}+1\right)+x\{+c\}$	$\begin{aligned} & \frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\left(\mathrm{e}^{x}+1\right)+x \\ & \text { or } \frac{1}{3}\left(\mathrm{e}^{x}+1\right)^{3}+\frac{1}{2}\left(\mathrm{e}^{x}+1\right)^{2}+\mathrm{e}^{x}+x \end{aligned}$ simplified or un-simplified with or without Note: $\ln \left(\mathrm{e}^{x}+1-1\right)$ needs to be simplified to x for this mark	A1
			[3]
3. (ii)$\text { Alt } 2$	$\int\left(\mathrm{e}^{x}+1\right)^{3} \mathrm{~d} x ; \quad u=\mathrm{e}^{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{x}$		
	$\left\{=\int \frac{(u+1)^{3}}{u} \mathrm{~d} u=\right\} \int\left(u^{2}+3 u+3+\frac{1}{u}\right) \mathrm{d} u$	$\int\left(u^{2}+3 u+3+\frac{1}{u}\right)\{\mathrm{d} u\}$ where $u=\mathrm{e}^{x}$	B1
	$=\frac{1}{3} u^{3}+\frac{3}{2} u^{2}+3 u+\ln u\{+c\}$	$\begin{aligned} & \text { At least } 3 \text { of either } \alpha u^{2} \rightarrow \frac{\alpha}{3} u^{3} \text { or } \beta u \rightarrow \frac{\beta}{2} u^{2} \\ & \text { or } \delta \rightarrow \delta u \text { or } \frac{\lambda}{u} \rightarrow \lambda \ln u ; \alpha, \beta, \delta, \lambda \neq 0 \end{aligned}$	M1
	$=\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x\{+c\}$	$\frac{1}{3} \mathrm{e}^{3 x}+\frac{3}{2} \mathrm{e}^{2 x}+3 \mathrm{e}^{x}+x$ simplified or un-simplified with or without $+c$ Note: $\ln \left(\mathrm{e}^{x}\right)$ needs to be simplified to x for this mark	A1
			[3]

Question Number	Scheme		Notes	Marks
4. (a)	$\begin{aligned} & \frac{r}{h}=\tan 30 \Rightarrow r=h \tan 30\left\{\Rightarrow r=\frac{h}{\sqrt{3}} \text { or } r=\frac{\sqrt{3}}{3} h\right\} \\ & \text { or } \quad \frac{h}{r}=\tan 60 \Rightarrow r=\frac{h}{\tan 60}\left\{\Rightarrow r=\frac{h}{\sqrt{3}} \text { or } r=\frac{\sqrt{3}}{3} h\right\} \\ & \text { or } \quad \frac{r}{\sin 30}=\frac{h}{\sin 60} \Rightarrow r=\frac{h \sin 30}{\sin 60}\left\{\Rightarrow r=\frac{h}{\sqrt{3}} \text { or } r=\frac{\sqrt{3}}{3} h\right\} \\ & \text { or } \quad h^{2}+r^{2}=(2 r)^{2} \Rightarrow r^{2}=\frac{1}{3} h^{2} \end{aligned}$		Correct use of trigonometry to find r in terms of h or correct use of Pythagoras to find r^{2} in terms of h^{2}	M1
	$\left\{V=\frac{1}{3} \pi r^{2} h \Rightarrow\right\} V=\frac{1}{3} \pi\left(\frac{h}{\sqrt{3}}\right)^{2} h \Rightarrow V=\frac{1}{9} \pi h^{3} *$	Correct proof of $V=\frac{1}{9} \pi h^{3}$ or $V=\frac{1}{9} h^{3} \pi$ Or shows $\frac{1}{9} \pi h^{3}$ or $\frac{1}{9} h^{3} \pi$ with some reference to $V=$ in their solution		A1*
	$\frac{\mathrm{d} V}{\mathrm{~d} t}=200$			[2]
(b) Way 1				
	$\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{1}{3} \pi h^{2}$		$\frac{1}{3} \pi h^{2}$ o.e.	B1
	Either - $\left\{\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \Rightarrow\right\}\left(\frac{1}{3} \pi h^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} t}=200$ - $\left\{\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h} \Rightarrow\right\} \frac{\mathrm{d} h}{\mathrm{~d} t}=200 \times \frac{1}{\frac{1}{3} \pi h^{2}}$		$\begin{aligned} & \text { either }\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}=200 \\ & \text { or } 200 \div\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right) \end{aligned}$	M1
	When$h=15, \frac{\mathrm{~d} h}{\mathrm{~d} t}=200 \times \frac{1}{\frac{1}{3} \pi(15)^{2}} \quad\left\{=\frac{200}{75 \pi}=\frac{600}{225 \pi}\right\}$		dependent on the previous M mark	dM1
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{8}{3}\left(\mathrm{~cm} \mathrm{~s}^{1}\right)$		$\frac{8}{3}$	A1 cao
				[4]
				6
(b) Way 2	$\frac{\mathrm{d} V}{\mathrm{~d} t}=200 \Rightarrow V=200 t+c \Rightarrow \frac{1}{9} \pi h^{3}=200 t+c$			
	$\left(\frac{1}{3} \pi h^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} t}=200$		$\frac{1}{3} \pi h^{2}$ o.e.	B1
			as in Way 1	M1
	When$h=15, \frac{\mathrm{~d} h}{\mathrm{~d} t}=200 \times \frac{1}{\frac{1}{3} \pi(15)^{2}}\left\{=\frac{200}{75 \pi}=\frac{600}{225 \pi}\right\}$		dependent on the previous M mark	dM1
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{8}{3}\left(\mathrm{cms}^{1}\right)$		$\frac{8}{3}$	A1 cao
				[4]

	Question 4 Notes	
4. (a)	Note	Allow M1 for writing down $r=h \tan 30$
	Note	Give M0 A0 for writing down $r=\frac{h \sqrt{3}}{3}$ or $r=\frac{h}{\sqrt{3}}$ with no evidence of using trigonometry on r and h or Pythagoras on r and h
	Note	Give M0 (unless recovered) for evidence of $\frac{1}{3} \pi r^{2} h=\frac{1}{9} \pi h^{3}$ leading to either $r^{2}=\frac{1}{3} h^{2}$ or $r=\frac{h \sqrt{3}}{3}$ or $r=\frac{h}{\sqrt{3}}$
(b)	B1 Note	Correct simplified or un-simplified differentiation of V. E.g. $\frac{1}{3} \pi h^{2}$ or $\frac{3}{9} \pi h^{2}$ $\frac{\mathrm{d} V}{\mathrm{~d} h}$ does not have to be explicitly stated, but it should be clear that they are differentiating their V
	M1	$\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}=200 \text { or } 200 \div\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right)$
	dM1	dependent on the previous M mark Substitutes $h=15$ into an expression which is a result of either $200 \div\left(\right.$ their $\left.\frac{\mathrm{d} V}{\mathrm{~d} h}\right)$ or $200 \times \frac{1}{\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right)}$
	A1	$\frac{8}{3}$ (units are not required)
	Note	Give final A0 for using $\frac{\mathrm{d} V}{\mathrm{~d} t}=-200$ to give $\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{8}{3 \pi}$, unless recovered to $\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{8}{3 \pi}$

	Question 5 Notes Continued	
5. (b)	Note	The final A mark is dependent on all previous marks in part (b) being scored. This is because the correct answer can follow from an incorrect $\frac{d y}{d x}$
	Note	The first 3 marks can be gained by using degrees in part (b)
	Note	Condone mixing a correct t with an incorrect x or an incorrect t with a correct x for the M marks
	Note	Allow final A1 for any answer in the form $y=p x+q$ E.g. Allow final A1 for $y=-4 x+26-2 \pi, y=-4 x+2+4\left(6-\frac{\pi}{2}\right)$ or $y=-4 x+\left(\frac{52-4 \pi}{2}\right)$
	Note	Do not apply isw in part (b). So, an incorrect answer following from a correct answer is A0
	Note	Do not allow $y=2(-2 x+13-\pi)$ for A1
	Note	$y=-4 x+26-2 \pi$ followed by $y=2(-2 x+13-\pi)$ is condoned for final A1

	Question 6 Notes Continued	
6.	Note	Writing $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}}{3 \cos ^{2} 2 x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{3} y^{2} \sec ^{2} 2 x$ leading to e.g.
• $y=\frac{1}{9} y^{3}\left(\frac{1}{2} \tan 2 x\right)$ gets $2^{\text {nd }} \mathrm{M} 0$ for $\pm \lambda \tan 2 x$		
	• $u=\frac{1}{3} y^{2}, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sec ^{2} 2 x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{2}{3} y, v=\frac{1}{2} \tan 2 x$ gets $2^{\text {nd }} \mathrm{M} 0$ for $\pm \lambda \tan 2 x$ because the variables have not been separated	

Question Number	Scheme	Notes		Marks
7.	$\overrightarrow{O A}=\left(\begin{array}{r}-3 \\ 7 \\ 2\end{array}\right), \overrightarrow{A B}=\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right), \overrightarrow{O P}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right) ; \overrightarrow{O Q}=\left(\begin{array}{c}9+4 \mu \\ 1-6 \mu \\ 8+2 \mu\end{array}\right)$	or $\overrightarrow{O Q}=\left(\begin{array}{c}9+2 \mu \\ 1-3 \mu \\ 8+\mu\end{array}\right)$	Let $\theta=$ size of angle $P A B$. A, B lie on l_{1} and P lies on l_{2}	
(a)	$\begin{aligned} & \{\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B} \Rightarrow\} \\ & \overrightarrow{O B}=\left(\begin{array}{r} -3 \\ 7 \\ 2 \end{array}\right)+\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)=\left(\begin{array}{l} 1 \\ 1 \\ 4 \end{array}\right) \Rightarrow B(1,1,4) \end{aligned}$	Attempts to add $\overrightarrow{O A}$ to $\overrightarrow{A B}$		M1
		$(1,1,4)$ or $\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)$ or $\mathbf{i}+\mathbf{j}+4 \mathbf{k}$		A1
	Note: M1 can be implied by at least 2 correct components for B			[2]
(b)	$\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{O A}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)-\left(\begin{array}{r}-3 \\ 7 \\ 2\end{array}\right)=\left(\begin{array}{r}12 \\ -6 \\ 6\end{array}\right)$ or $\overrightarrow{P A}=\left(\begin{array}{r}-12 \\ 6 \\ -6\end{array}\right)$		An attempt to find $\overrightarrow{A P}$ or $\overrightarrow{P A}$	M1
	$\left\{\cos \theta=\frac{\overrightarrow{A P} \cdot \overrightarrow{A B}}{\|\overrightarrow{A P}\|\|\overrightarrow{A B}\|}\right\}=\frac{\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \cdot\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)}{\sqrt{(12)^{2}+(-6)^{2}+(6)^{2}} \cdot \sqrt{(4)^{2}+(-6)^{2}+(2)^{2}}}$		Applies dot product formula between their $(\overrightarrow{A P}$ or $\overrightarrow{P A})$ $\operatorname{and}(\overrightarrow{A B}$ or $\overrightarrow{B A})$ or a multiple of these vectors	dM1
	$\left\{\cos \theta=\frac{96}{\sqrt{216} \cdot \sqrt{56}} \Rightarrow \cos \theta\right\}=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$		$\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$	A1
				[3]
(c)	$\left\{\cos \theta=\frac{4}{\sqrt{21}}\right\} \Rightarrow \sin \theta=\frac{\sqrt{21-16}}{\sqrt{21}}=\frac{\sqrt{5}}{\sqrt{21}}=\frac{\sqrt{105}}{21} \quad \begin{aligned} & \text { A correct method for converting an exact } \\ & \text { value for } \cos \text { to an exact value for sin } \end{aligned}$			M1
	Area $P A B=\frac{1}{2}(\sqrt{216})(\sqrt{56})\left(\frac{\sqrt{5}}{\sqrt{21}}\right)\left\{=12 \sqrt{21}\left(\frac{\sqrt{5}}{\sqrt{21}}\right)\right\}=12 \sqrt{5} \times 12 \sqrt{5}$			M1
				A1 cao
				[3]
(d)	$\left\{l_{2}:\right\} \mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right)$	$\mathbf{p}+\lambda \mathbf{d}$ or $\mathbf{p}+\mu \mathbf{d}, \mathbf{p} \neq 0, \mathbf{d} \neq 0$ with either $\mathbf{p}=9 \mathbf{i}+\mathbf{j}+8 \mathbf{k}$ or $\mathbf{d}=4 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}$ or $\mathbf{d}=$ multiple of $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$		M1
		Correct vector equation		A1
				[2]
(e)	$\overrightarrow{B Q}=\left(\begin{array}{l}9+4 \mu \\ 1-6 \mu \\ 8+2 \mu\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 4\end{array}\right)\left\{=\left(\begin{array}{c}8+4 \mu \\ -6 \mu \\ 4+2 \mu\end{array}\right)\right\}\left\{\overrightarrow{Q B}=\left(\begin{array}{c}-8-4 \mu \\ 6 \mu \\ -4-2 \mu\end{array}\right)\right\}$		Applies their $\overrightarrow{O Q}$ - their $\overrightarrow{O B}$ or their $\overrightarrow{O B}$ - their $\overrightarrow{O Q}$	M1
	$\overrightarrow{B Q} \cdot \overrightarrow{A P}=0 \Rightarrow\left(\begin{array}{c}8+4 \mu \\ -6 \mu \\ 4+2 \mu\end{array}\right) \cdot\left(\begin{array}{r}12 \\ -6 \\ 6\end{array}\right)=0 \Rightarrow \mu=\ldots \quad \begin{gathered}\text { Applies } \overrightarrow{B Q} \cdot \overrightarrow{A P}=0, \text { o.e. and solves the } \\ \text { resulting equation to find a value for } \mu\end{gathered}$			dM1
	$\Rightarrow 96+48 \mu+36 \mu+24+12 \mu=0 \Rightarrow 96 \mu+120=0 \Rightarrow \mu=-\frac{5}{4}$		$\mu=-\frac{120}{96}$ or $\mu=-\frac{5}{4}$	A1 o.e.
	$\overrightarrow{O Q}=\left(\begin{array}{c}9+4(-1.25) \\ 1-6(-1.25) \\ 8+2(-1.25)\end{array}\right)=\left(\begin{array}{r}4 \\ 8.5 \\ 5.5\end{array}\right) \Rightarrow Q(4,8.5,5.5)$	Substitutes their value of μ into $\overrightarrow{O Q}$		ddM1
		$(4,8.5,5.5) \text { or }\left(\begin{array}{c} 4 \\ 8.5 \\ 5.5 \end{array}\right) \text { or } 4 \mathbf{i}+8.5 \mathbf{j}+5.5 \mathbf{k}$		A1 o.e.
				[5]
				15

	Question 7 Notes	
7. (b)	Note	If no "subtraction" seen, you can award $1^{\text {st }} \mathrm{M} 1$ for 2 out of 3 correct components of the difference
	Note	For dM1 the dot product formula can be applied as $\sqrt{(12)^{2}+(-6)^{2}+(6)^{2}} \cdot \sqrt{(4)^{2}+(-6)^{2}+(2)^{2}} \cos \theta=\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \cdot\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)$
	Note	Evaluation of the dot product for $12 \mathbf{i}-6 \mathbf{j}+6 \mathbf{k}$ \& $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is not required for the dM1 mark
	A1	For either $\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$ or $\cos \theta=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$
	Note	Using $12 \mathbf{i}-6 \mathbf{j}+6 \mathbf{k}$ \& $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ gives $\cos \theta=\frac{24+18+6}{\sqrt{216} \cdot \sqrt{14}}=\frac{48}{12 \sqrt{21}}=\frac{4}{\sqrt{21}}$ or $\frac{4}{\underline{21} \sqrt{21}}$
	Note	Using $2 \mathbf{i}-\mathbf{j}+\mathbf{k} \& 2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ gives $\cos \theta=\frac{4+3+1}{\sqrt{6} \cdot \sqrt{14}}=\frac{8}{2 \sqrt{21}}=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$
	Note	Give M1M1A0 for finding $\theta=$ awrt 29.2 without reference to $\cos \theta=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$
	Note	Condone taking the dot product between vectors the wrong way round for the M1 dM1 marks
	Note	Vectors the wrong way round
		- E.g. taking the dot product between $\overrightarrow{P A}$ and $\overrightarrow{A B}$ to give $\cos \theta=-\frac{4}{\sqrt{21}}$ or $-\frac{4}{21} \sqrt{21}$ with no other working is final A0 - E.g. taking the dot product between $\overrightarrow{P A}$ and $\overrightarrow{A B}$ to give $\cos \theta=-\frac{4}{\sqrt{21}}$ or $-\frac{4}{21} \sqrt{21}$ followed by $\cos \theta=\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$ or just simply writing $\frac{4}{\sqrt{21}}$ or $\frac{4}{21} \sqrt{21}$ is final A1
	Note	In part (b), give M0dM0 for finding and using $\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{A B}=(5 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k})$
(c)	Note	Give $1^{\text {st }} \mathrm{M} 0$ for $\sin \theta=\sin \left(\cos ^{-1}\left(\frac{4 \sqrt{21}}{21}\right)\right)$ or $\sin \theta=1-\left(\frac{4}{21} \sqrt{21}\right)^{2}$ unless recovered
	M1	Give $2^{\text {nd }}$ M1 for either - $\frac{1}{2}$ (their length $A P$)(their length $A B$)(their attempt at $\sin \theta$) - $\frac{1}{2}$ (their length $\left.A P\right)$ (their length $\left.A B\right) \sin \left(\right.$ their 29.2° from part (b)) - $\frac{1}{2}$ (their length $\left.A P\right)($ their length $A B) \sin \theta$; where $\cos \theta=\ldots$ in part (b)
	Note	$\frac{1}{2}(\sqrt{216})(\sqrt{56}) \sin \left(\right.$ awrt 29.2° or awrt $\left.150.8^{\circ}\right)\{=$ awrt 26.8$\}$ without reference to finding $\sin \theta$ as an exact value if M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to finding $\sin \theta$ as an exact value is M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to $12 \sqrt{5}$ is A0
	Note	If they use $\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{A B}=(5 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k})$ in part (b), then this can be followed through in part (c) for the $2^{\text {nd }} \mathrm{M}$ mark as e.g. $\frac{1}{2}(\sqrt{110})(\sqrt{56}) \sin \theta$
	Note	Finding $12 \sqrt{5}$ in part (c) is M1 dM1 A1, even if there is little or no evidence of finding an exact value for $\sin \theta$. So $\frac{1}{2}(\sqrt{216})(\sqrt{56}) \sin \left(29.2^{\circ}\right)=12 \sqrt{5}$ is M1 dM1 A1

	Question 7 Notes Continued			
7. (d)	Note	Writing $\mathbf{r}=\ldots$ or $l_{2}=\ldots$ or $l=\ldots$ or Line $2=\ldots$ is not required for the M mark		
	A1 Note Note	Writing $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}2 \\ -3 \\ 1\end{array}\right)$ or $\mathbf{r}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu \mathbf{d}$, where $\mathbf{d}=$ a multiple of $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ Writing $\mathbf{r}=\ldots$ or $l_{2}=\ldots$ or $l=\ldots$ or Line $2=\ldots$ is required for the A mark Other valid $\mathbf{p}=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)$ are e.g. $\mathbf{p}=\left(\begin{array}{c}13 \\ -5 \\ 10\end{array}\right)$ or $\mathbf{p}=\left(\begin{array}{l}5 \\ 7 \\ 6\end{array}\right)$. So $\mathbf{r}=\left(\begin{array}{r}13 \\ -5 \\ 10\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ is M1 A1		
	Note	Give A0 for writing $l_{2}:\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ or ans $=\left(\begin{array}{l}9 \\ 1 \\ 8\end{array}\right)+\mu\left(\begin{array}{r}4 \\ -6 \\ 2\end{array}\right)$ unless recovered		
	Note	Using scalar parameter λ or other scalar parameters (e.g. μ or s or t) is fine for M1 and/or A1		
(e)	ddM1	Substitutes their value of μ into $\overrightarrow{O Q}$, where $\overrightarrow{O Q}=$ their equation for l_{2}		
	Note	If they use $\overrightarrow{A P}=\overrightarrow{O P}-\overrightarrow{A B}=(5 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k})$ in part (b), then this can be followed through in part (e) for the $2^{\text {nd }} \mathrm{M}$ mark and the $3^{\text {rd }} \mathrm{M}$ mark		
	Note	You imply the final M mark in part (e) for at least 2 correctly followed through components for Q from their μ		
Question Number	Scheme Notes			Marks
7. (c) Alt 1	Vector Cross Product: Use this scheme if a vector cross product method is being applied			
	$\overrightarrow{A P} \times \overrightarrow{A B}=\underline{\left(\begin{array}{r} 12 \\ -6 \\ 6 \end{array}\right) \times\left(\begin{array}{r} 4 \\ -6 \\ 2 \end{array}\right)}=\left\{\left.\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{array} \right\rvert\,=24 \mathbf{i}+0 \mathbf{j}-48 \mathbf{k}\right\}$			
	Area $P A B=\frac{1}{2} \sqrt{(24)^{2}+(-48)^{2}}$		Uses a vector product and $\sqrt{(" 24 ")^{2}+(" 0 ")^{2}+("-48 ")^{2}}$	M1
			Uses a vector product and $\frac{1}{2} \sqrt{(" 24 ")^{2}+(" 0 ")^{2}+("-48 ")^{2}}$	M1
	$=12 \sqrt{ }$		$12 \sqrt{5}$	A1 cao
				[3]
$\begin{aligned} & \text { 7. (c) } \\ & \text { Alt } 2 \end{aligned}$	Note: $\cos A P B=\frac{5}{\sqrt{30}}$ or $\frac{1}{6} \sqrt{30} \quad$ Note: $\|\overrightarrow{P A}\|=\sqrt{216}$ and $\|\overrightarrow{P B}\|=\sqrt{80}$			
	$\sin \theta=\frac{\sqrt{30}}{\sqrt{30}}=\frac{\sqrt{\sqrt{30}}}{\sqrt{2}}=\frac{\sqrt{6}}{6}$	$\sqrt{30-25}$ $\sqrt{30}$ $=\frac{\sqrt{5}}{\sqrt{30}}=\frac{\sqrt{6}}{6}$A correct value for	A correct method for converting an exact value for cos to an exact value for sin	M1
	Area $P A B=\frac{1}{2}(\sqrt{216})(\sqrt{80})\left(\frac{\sqrt{5}}{\sqrt{30}}\right)\left\{=12 \sqrt{30}\left(\frac{\sqrt{5}}{\sqrt{30}}\right)\right\}=12 \sqrt{5}$		$\frac{1}{2}(\text { their } P A)(\text { their } P B) \sin \theta$	M1
			$12 \sqrt{5}$	A1 cao
				[3]

Question Number	Scheme					Marks
8. (b) Way 2	$\{V=\} \pi \int_{0}^{\frac{\pi}{4}}(\sqrt{x} \sin 2 x)^{2}\{\mathrm{~d} x\}$			Ignore limit	$\begin{aligned} & \int(\sqrt{x} \sin 2 x)^{2}\{\mathrm{~d} x\} \\ & \mathrm{d} x . \text { Can be implied } \end{aligned}$	B1
	$\begin{aligned} & \left\{\int x \sin ^{2} 2 x \mathrm{~d} x=\right\} \\ & \quad \int x\left(\frac{1-\cos 4 x}{2}\right)\{\mathrm{d} x\} \end{aligned}$		manipulati	r writing down a x and $\cos 4 x$ (e.g me attempt at app equation which	ect equation linking $\cos 4 x=1-2 \sin ^{2} 2 x$) g this equation (or a be incorrect) to their integral. Can be implied	M1
			$u=x \text { and }$	$\int x \sin ^{2} 2 x\{\mathrm{~d} x\}$ ote: This mark $\frac{\cos 4 x}{2} \text { or } u=\frac{1}{2}$	$\begin{aligned} & x\left(\frac{1-\cos 4 x}{2}\right)\{\mathrm{d} x\} \\ & \text { e implied for stating } \\ & \text { nd } \frac{\mathrm{d} v}{\mathrm{~d} x}=1-\cos 4 x \end{aligned}$	A1
	$=x\left(\frac{1}{2} x-\frac{1}{8} \sin 4 x\right)-\int\left(\frac{1}{2} x-\frac{1}{8} \sin 4 x\right) \mathrm{d} x$					
	$=x\left(\frac{1}{2} x-\frac{1}{8} \sin 4 x\right)-\left(\frac{1}{4} x^{2}+\frac{1}{32} \cos 4 x\right)\{+c\}$			$\pm A x^{2} \pm B x \sin 4 x$ or an expressio	Integrates to give $\cos 4 x ; A, B, C \neq 0$ at can be simplified to this form	M1 ${ }^{(B 1}$ on ePEN)
	\{ $\left.\int_{0}^{\frac{\pi}{4}}(\sqrt{x} \sin 2 x)^{2} \mathrm{~d} x=\left[\frac{1}{4} x^{2}-\frac{1}{8} x \sin 4 x-\frac{1}{32} \cos 4 x\right]_{0}^{\frac{\pi}{4}}\right\}$					
	$=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-\left(0-0-\frac{1}{32} \cos 0\right)$				dependent on the previous M mark see notes	dM1
	$=\left(\frac{\pi^{2}}{64}+\frac{1}{32}\right)-\left(-\frac{1}{32}\right)=\frac{\pi^{2}}{64}+\frac{1}{16}$					
	So, $V=\pi\left(\frac{\pi^{2}}{64}+\frac{1}{16}\right)$ or $\frac{1}{64} \pi^{3}+\frac{1}{16} \pi$ or $\frac{\pi}{2}\left(\frac{\pi^{2}}{32}+\frac{1}{8}\right)$ o.e.					A1 o.e.
						[6]
	Question 8 Notes Continued					
8. (a)	SC $\begin{array}{l}\text { Give Special Case M1A0A0 for writing down the correct "by parts" formula and using } \\ u=x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\cos 4 x, \text { but making only one error in the application of the correct formula }\end{array}$					
(b)	Note	You can imply B1 for seeing $\pi \int y^{2}\{\mathrm{~d} x\}$, followed by $y^{2}=(\sqrt{x} \sin 2 x)^{2}$ or $y^{2}=x \sin ^{2} 2 x$				
	Note	If the form $\cos 4 x=\cos ^{2} 2 x-\sin ^{2} 2 x$ or $\cos 4 x=2 \cos ^{2} 2 x-1$ is used, the $1^{\text {st }} \mathrm{M}$ cannot be gained until $\cos ^{2} 2 x$ has been replaced by $\cos ^{2} 2 x=1-\sin ^{2} 2 x$ and the result is applied to their integral				
	Note	Mixing x ' s and e.g. $\theta^{\prime} s$: Condone $\cos 4 \theta=1-2 \sin ^{2} 2 \theta, \sin ^{2} 2 \theta=\frac{1-\cos 4 \theta}{2}$ or $\lambda \sin ^{2} 2 \theta=\lambda\left(\frac{1-\cos 4 \theta}{2}\right)$ if recovered in their integration				
	$\begin{gathered} \hline \text { Final } \\ \text { M1 } \end{gathered}$	Complete method of applying limits of $\frac{\pi}{4}$ and 0 to all terms of an expression of the form $\pm A x^{2} \pm B x \sin 4 x \pm C \cos 4 x ; A, B, C \neq 0$ and subtracting the correct way round.				
	Note	For the final M1 mark in Way 1, allow one transcription error (on $\sin 4 x$ or $\cos 4 x$) in the copying of their answer from part (a) to part (b)				

Question 8 Notes Continued

8. (b)

Note
Evidence of a proper consideration of the limit of 0 on $\cos 4 x$ where applicable is needed for the
final M mark
E.g. $\left[\frac{1}{4} x^{2}-\frac{1}{8} x \sin 4 x-\frac{1}{32} \cos 4 x\right]_{0}^{\frac{\pi}{4}}=$

- $=\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)+\frac{1}{32}$ is final M1
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-0$ is final M0
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-\frac{1}{32}$ is final M0 (adding)
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-\left(\frac{1}{32}\right)$ is final M1 (condone)
- $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^{2}-\frac{1}{8}\left(\frac{\pi}{4}\right) \sin \left(4\left(\frac{\pi}{4}\right)\right)-\frac{1}{32} \cos \left(4\left(\frac{\pi}{4}\right)\right)\right)-(0+0+0)$ is final M0

8. (b)

Note Alternative Method:

$$
\begin{aligned}
& \left\{\begin{array}{cc}
u=\sin ^{2} 2 x \quad & \frac{\mathrm{~d} v}{\mathrm{~d} x}=x \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \sin 4 x & v=\frac{1}{2} x^{2}
\end{array}\right\},\left\{\begin{array}{cc}
u=x^{2} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin 4 x \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x & v=-\frac{1}{4} \cos 4 x
\end{array}\right\} \\
& \int x \sin ^{2} 2 x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\int \frac{1}{2} x^{2}(2 \sin 4 x) \mathrm{d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\int x^{2} \sin 4 x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\left(-\frac{1}{4} x^{2} \cos 4 x-\int 2 x .\left(-\frac{1}{4} \cos 4 x\right) \mathrm{d} x\right) \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x-\left(-\frac{1}{4} x^{2} \cos 4 x+\frac{1}{2} \int x \cos 4 x \mathrm{~d} x\right) \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x+\frac{1}{4} x^{2} \cos 4 x-\frac{1}{2} \int x \cos 4 x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x+\frac{1}{4} x^{2} \cos 4 x-\frac{1}{2}\left(\frac{1}{4} x \sin 4 x+\frac{1}{16} \cos 4 x\right)\{+c\} \\
& =\frac{1}{2} x^{2} \sin ^{2} 2 x+\frac{1}{4} x^{2} \cos 4 x-\frac{1}{8} x \sin 4 x-\frac{1}{32} \cos 4 x\{+c\} \\
& V=\pi \int_{0}^{\frac{\pi}{4}}(\sqrt{x} \sin 2 x)^{2} \mathrm{~d} x=\pi\left(\frac{\pi^{2}}{64}+\frac{1}{16}\right) \text { or } \frac{1}{64} \pi^{3}+\frac{1}{16} \pi \quad \text { or } \frac{\pi}{2}\left(\frac{\pi^{2}}{32}+\frac{1}{8}\right) \text { o.e. }
\end{aligned}
$$

